
 

Human + AI technical 
interview rubrics 
Executive summary 

Five years ago, Karat published a resource on how to create structured scoring 
rubrics for technical interviews. That article remains one of our most-viewed and 
most-searched web pages.  

There are several reasons CIOs and CTOs keep coming back to this content. Rubrics 
put candidates on a level playing field, allowing leaders to review and evaluate 
engineers using consistent rating scales. Structured rubrics make it clear which 
competencies are meaningful for the job, and help extrapolate talent 
recommendations from those competencies. They also provide transparent and 
auditable records of the signals used to make talent decisions, which is increasingly 
critical for regulatory and compliance reasons.  

In the human + AI era, the competencies that make strong engineers and the way 
we evaluate them have changed. So rubrics must also evolve.  

Today’s engineers use AI to explore unfamiliar codebases, reason about design 
tradeoffs, generate first-draft implementations, and accelerate debugging. Simply 
evaluating whether a candidate can independently produce a correct solution to a 
bounded problem no longer generates a sufficient signal on talent quality.  

This white paper outlines how enterprise CIOs and CTOs must evolve technical skills 
evaluations and scoring rubrics for the human + AI era. It builds on proven 
rubric-based evaluation practices while introducing new, AI-native competencies 
that must be assessed independently and concurrently with traditional engineering 
skills. 

 

https://karat.com/interview-engineering-how-to-create-a-structured-rubric-for-technical-interviews/
https://karat.com/interview-engineering-how-to-create-a-structured-rubric-for-technical-interviews/
https://www.nytimes.com/2026/01/21/business/ai-hiring-tools-lawsuit-eightfold-fcra.html


 

Why traditional rubrics are no longer enough 

Historically, technical interviews extrapolated a candidate’s real-world effectiveness 
from a narrow set of signals: 

●​ How does a candidate reason through a problem independently? 
●​ Does the candidate implement a working solution? 
●​ Can the candidate explain that solution clearly? 

Using structured rubrics to observe how a candidate solves real-world software 
problems allows us to infer other skills. These include dealing with ambiguity, 
communication, requirements gathering, edge-case analysis, debugging, and 
optimization, to name a few. 

In an AI-augmented environment, that inference breaks down. Today, a working 
solution to a basic coding question can be produced with far less friction. And 
because of that, the most valuable engineering work in enterprise settings 
increasingly happens around the code, including: 

●​ Determining where in a large codebase changes should be made 
●​ Evaluating AI-generated suggestions for correctness and risk 
●​ Making principled design tradeoffs under ambiguity 
●​ Maintaining system integrity, performance, and maintainability over time 

Rubrics must evolve to explicitly measure these abilities rather than assuming they 
are implied. 

Core principles for human + AI skills evaluations 

1. Separate outcomes from process 

In modern interviews, what a candidate produces is no longer sufficient to generate 
a predictive skills evaluation. Rubrics must distinguish between: 

●​ Task completion: Did the candidate change the system in the intended way? 
●​ Process quality: How did the candidate arrive at their answer? 



 

This requires explicit competencies for navigation, decision-making, evaluation, and 
justification. And these competencies must be validated regardless of whether the 
final code was written manually or with AI assistance. 

2. Treat AI as an engineering resource 

Candidates should neither be penalized nor implicitly rewarded for AI-outputs. This 
approach builds on our existing “open book” policy that allows candidates to 
reference Stack Overflow, Google, or other documentation during an interview.  

Instead of limiting or over-prescribing AI-use, rubrics should assess: 

●​ When and why AI is used 
●​ How effectively prompts are scoped 
●​ Whether AI outputs are evaluated, tested, and corrected 

The goal is not to test familiarity with a specific model, but to evaluate judgment, 
AI-proficiency, and oversight. This ensures that candidates are properly credited 
if/when they identify a hallucination and re-prompt the LLM for a new response, and 
not penalized because the AI (through no fault of the candidate) might take multiple 
attempts to generate an optimal response. 

3. Anchor scoring in observable behavior 

As with traditional rubrics, every competency must be scored based on observable 
actions, and not based on intent or style. If a behavior cannot be reliably observed 
during the interview, it should not be assumed. 

 



 

Evolving the competency model: code productivity 

In a pre-LLM world, evaluating coding productivity was relatively straightforward. To 
what extent did the candidate write code that addressed the task requirements? Our 
scoring rubrics had a section for "Completeness." Interviewers were instructed to 
select one of the following options based on the candidate’s output: 

 

This methodology formed the backbone of most traditional technical assessment 
formats, including technical interviews, code tests, and take-home projects. While 
live interviews continue to offer the advantage of robust discussions and follow-up 
questions that probe candidate understanding, the fundamental point of analysis 
was still the code a candidate produced and ran. 

In the human + AI era, a simple solution to a basic coding question can be generated 
in seconds. As such, a fully-working and optimized coding solution no longer 
produces the same hiring signal it once did. Leaders need a more granular rubric to 
validate the candidate’s approach and separate it from someone who got lucky with 
a prompt.  

As such, many competencies are augmented with several sub-competencies. 

 

 

 



 

NextGen interview rubrics for the human + AI era 

Traditional DSA Interview ​
(non-LLM-enabled)​
Skills Assessed 

 NextGen Interview 
(LLM-enabled) 
Skills & Sub-Skills Assessed 

Code Productivity  
 Productivity 

Coding Productivity 
Navigating Code Base 

 

 

Independently 
Writes Code  

 Code Quality​
Code Correctness 
Code Efficiency & Design 

 

 

Writes Optimal 
Code  

 Product Sense & Problem Solving​
Clarifying Ambiguity 
Identifying Test Cases​
Debugging / Troubleshooting 

​

 

Debugging  
 Communication​

Identifying / Explaining Code 
Justifying Choices 

 

 

Complexity 
Analysis  

 AI Proficiency ​
Prompting for AI Code 
Evaluating AI Code 

 

 

Redefining “Productivity” for the human + AI era 

Engineers seldom work in greenfield environments. In enterprise systems, knowing 
where to work is often more valuable than knowing how to type the code. Rubrics 
should explicitly assess how candidates familiarize and orient themselves within 
unfamiliar codebases. 

To accomplish this, our NextGen rubric breaks Code Productivity into two 
sub-segments. The “Completeness” section is replaced by a new measure of Code 
Productivity, and a new sub-competency that assesses a candidate’s ability to 
review and navigate a robust codebase while leveraging AI tools. 



 

​
Note: This section specifically records how much of the task the candidate meaningfully worked on. The 
logical correctness or quality of their code shouldn't factor into the rating here. Those observations are 
recorded in separate "Code Correctness" and “Implementation Quality” rubric sections. Separating 
these into discrete observations allows the competencies to be evaluated independently.  

Sub-competency: Navigating Code Base 

Observable signals for Navigating Code Base may include: 

●​ Identifying the correct files, classes, or modules to inspect 
●​ Using tooling (including AI) to accelerate understanding 
●​ Avoiding unnecessary exploration of irrelevant areas 

These two scores (Code Productivity and Navigating Code Base) can be weighted 
based on the role requirements and are combined to create a new aggregate 
Productivity score. 

Updated competency: Product Sense and Problem Solving 

Product sense and problem-solving are examples of critical engineering 
competencies that “lucky” AI outputs might obfuscate in an interview setting. In 
AI-enabled interviews, it becomes vital to observe and record how effectively a 
candidate asks questions to clarify and scope the task requirements.  



 

Observable signals and sub-competencies for Product Sense and Problem Solving 
may include: 

●​ Asking multiple relevant questions about goals or task requirements 
●​ Making reasonable assumptions in the implementation of a task 
●​ Identifying meaningful cases to test 
●​ Proficiently debugging without assistance 

New competency: AI Proficiency 

High-performing engineers treat AI as a collaborator, not an oracle. Unchecked 
AI-generated code introduces operational, security, and reliability risks, especially at 
enterprise scale. Thus, the ability to evaluate code has become even more important 
than the ability to produce it from scratch. Thus, evaluating a candidate’s AI 
proficiency requires insights into both how a candidate produces code using AI and 
how they evaluate it. 

Sub-competency: Prompting AI Code 

Observable signals may include: 

●​ Crafting prompts with appropriate scope and context 
●​ Using AI to summarize, analyze, or compare code paths 
●​ Recognizing when AI output is incomplete, incorrect, or misleading 

Sub-competency: Evaluating AI-Generated Code 

Observable signals may include: 

●​ Reading and explaining AI-generated logic 
●​ Running or testing generated code 
●​ Modifying AI output to align with system constraints 

Different organizations may tailor the competencies they evaluate and adjust score 
weighting across roles and levels, but the most important factor is having clear, 
consistent guidelines for how interviewers score observable behaviors. This prevents 
conflating competencies and subjective/stylistic choices (i.e., is the candidate 
actually a “poor communicator” or did they just have an accent that was difficult for 
the interviewer to understand?). 



 

From rubric scores to workforce strategies 

One essential point to remember is that rubrics are not decisions. They are records of 
observable behaviors. These observations should aggregate into scores that allow 
candidates’ abilities to be compared on a level playing field. 

This allows for flexibility when: 

●​ Weighting decision-making and evaluation competencies more heavily for 
senior roles 

●​ Allowing multiple “paths to yes” that reflect different engineering strengths 
●​ Explicitly defining red flags (e.g., uncritical acceptance of AI output) 

The result is a much richer, higher definition profile of each candidate that 
independently evaluates core competencies and AI proficiency.  

Structured rubrics matter more than ever 

AI amplifies variance. Two candidates can arrive at similar outcomes with radically 
different levels of understanding, ownership, and risk. 

Structured rubrics: 

●​ Make that variance visible and auditable 
●​ Reduce reliance on intuition 
●​ Protect against bias introduced by communication style or AI familiarity 

For enterprise organizations, they are the foundation for evaluating engineers who 
can safely and effectively operate in AI-augmented environments. 

Conclusion 

AI is raising the talent bar by enabling the strongest engineers to create more value 
than ever before. Leaders are under pressure to cut costs due to AI gains, but 
productivity gains alone aren’t enough to keep up with competitors. As a result, most 
engineering executives expect flat or growing headcounts, with hiring and L&D cited 
as the main strategies for transforming their workforce for AI.  

https://karat.com/the-human-ai-workforce-transformation-is-here-is-your-hiring-process-ready/
https://karat.com/resource/ai-workforce-transformation-report/


 

Yet, despite the strategic focus on hiring and the need to maintain or grow 
headcounts, most orgs aren't ready to hire engineers with the skills they need for a 
human + AI enterprise. Research shows that the organizations that use live human 
interviewers while allowing candidates to leverage the latest AI tools produce the 
best engineering outcomes.  

By evolving competencies, preserving observable scoring, and treating AI as a 
first-class part of the engineering workflow, CIOs and CTOs can continue to hire with 
confidence, consistency, and scale. 

The organizations that adapt their rubrics now will be best positioned to build 
durable engineering teams for the next decade. 

 

 

https://connect.karat.com/hubfs/2025-AI-Workforce-Transformation-Highlights.pdf
https://connect.karat.com/hubfs/2025-AI-Workforce-Transformation-Highlights.pdf
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