karat”

Human + Al technical
interview rubrics

Executive summary

Five years ago, Karat published a resource on how to create structured scorin

rubrics for technical interviews. That article remains one of our most-viewed and

most-searched web pages.

There are several reasons ClOs and CTOs keep coming back to this content. Rubrics
put candidates on a level playing field, allowing leaders to review and evaluate
engineers using consistent rating scales. Structured rubrics make it clear which
competencies are meaningful for the job, and help extrapolate talent
recommendations from those competencies. They also provide transparent and
auditable records of the signals used to make talent decisions, which is increasingly

critical for regulatory and compliance reasons.

In the human + Al era, the competencies that make strong engineers and the way
we evaluate them have changed. So rubrics must also evolve.

Today’s engineers use Al to explore unfamiliar codebases, reason about design
tradeoffs, generate first-draft implementations, and accelerate debugging. Simply
evaluating whether a candidate can independently produce a correct solution to a
bounded problem no longer generates a sufficient signal on talent quality.

This white paper outlines how enterprise ClIOs and CTOs must evolve technical skills
evaluations and scoring rubrics for the human + Al era. It builds on proven
rubric-based evaluation practices while introducing new, Al-native competencies
that must be assessed independently and concurrently with traditional engineering
skills.


https://karat.com/interview-engineering-how-to-create-a-structured-rubric-for-technical-interviews/
https://karat.com/interview-engineering-how-to-create-a-structured-rubric-for-technical-interviews/
https://www.nytimes.com/2026/01/21/business/ai-hiring-tools-lawsuit-eightfold-fcra.html

karat”

Why traditional rubrics are no longer enough

Historically, technical interviews extrapolated a candidate’s real-world effectiveness
from a narrow set of signals:

e How does a candidate reason through a problem independently?
e Does the candidate implement a working solution?
e Can the candidate explain that solution clearly?

Using structured rubrics to observe how a candidate solves real-world software
problems allows us to infer other skills. These include dealing with ambiguity,
communication, requirements gathering, edge-case analysis, debugging, and

optimization, to name a few.

In an Al-augmented environment, that inference breaks down. Today, a working
solution to a basic coding question can be produced with far less friction. And
because of that, the most valuable engineering work in enterprise settings
increasingly happens around the code, including:

e Determining where in a large codebase changes should be made

e Evaluating Al-generated suggestions for correctness and risk

e Making principled design tradeoffs under ambiguity

¢ Maintaining system integrity, performance, and maintainability over time

Rubrics must evolve to explicitly measure these abilities rather than assuming they

are implied.

Core principles for human + Al skills evaluations

1. Separate outcomes from process

In modern interviews, what a candidate produces is no longer sufficient to generate
a predictive skills evaluation. Rubrics must distinguish between:

e Task completion: Did the candidate change the system in the intended way?
e Process quality: How did the candidate arrive at their answer?



karat”

This requires explicit competencies for navigation, decision-making, evaluation, and
justification. And these competencies must be validated regardless of whether the
final code was written manually or with Al assistance.

2. Treat Al as an engineering resource

Candidates should neither be penalized nor implicitly rewarded for Al-outputs. This
approach builds on our existing “open book” policy that allows candidates to
reference Stack Overflow, Google, or other documentation during an interview.

Instead of limiting or over-prescribing Al-use, rubrics should assess:

e When and why Al is used
e How effectively prompts are scoped
e Whether Al outputs are evaluated, tested, and corrected

The goal is not to test familiarity with a specific model, but to evaluate judgment,
Al-proficiency, and oversight. This ensures that candidates are properly credited
if/\when they identify a hallucination and re-prompt the LLM for a new response, and
not penalized because the Al (through no fault of the candidate) might take multiple
attempts to generate an optimal response.

3. Anchor scoring in observable behavior

As with traditional rubrics, every competency must be scored based on observable
actions, and not based on intent or style. If a behavior cannot be reliably observed
during the interview, it should not be assumed.



karat”

Evolving the competency model: code productivity

In a pre-LLM world, evaluating coding productivity was relatively straightforward. To
what extent did the candidate write code that addressed the task requirements? Our
scoring rubrics had a section for "Completeness.” Interviewers were instructed to
select one of the following options based on the candidate’s output:

Completeness
Fully working: The solution returns the desired output without any
) bugs, and all the test cases pass. This may include additional edge
. cases.

Mostly working: The candidate is approaching a fully-working
solution without assistance. OR the solution works in the general
sense, even if it doesn't run; however, it may not cover an edge
case or two.

Partially working: The candidate wrote some useful code, but
either no test cases pass or only a few trivial test cases pass.

Trivial progress: The candidate wrote some code, but it did not
solve any of the core questions.

No implementation: The candidate identified a reasonable
approach, but ran out of time before writing any meaningful code.

This methodology formed the backbone of most traditional technical assessment
formats, including technical interviews, code tests, and take-home projects. While
live interviews continue to offer the advantage of robust discussions and follow-up
questions that probe candidate understanding, the fundamental point of analysis

was still the code a candidate produced and ran.

In the human + Al erg, a simple solution to a basic coding question can be generated
in seconds. As such, a fully-working and optimized coding solution no longer
produces the same hiring signal it once did. Leaders need a more granular rubric to
validate the candidate’s approach and separate it from someone who got lucky with

a prompt.

As such, many competencies are augmented with several sub-competencies.



NextGen interview rubrics for the human + Al era

Traditional DSA Interview
(non-LLM-enabled)
Skills Assessed

Code Productivity

Independently
Writes Code

Writes Optimal
Code

Debugging

Complexity
Analysis

NextGen Interview
(LLM-enabled)
Skills & Sulb-Skills Assessed

Productivity
Coding Productivity
Navigating Code Base

Code Quality
Code Correctness
Code Efficiency & Design

Product Sense & Problem Solving
Clarifying Ambiguity

Identifying Test Cases

Debugging / Troubleshooting

Communication
Identifying / Explaining Code
Justifying Choices

Al Proficiency
Prompting for Al Code
Evaluating Al Code

Redefining “Productivity” for the human + Al era

karat”

Engineers seldom work in greenfield environments. In enterprise systems, knowing

where to work is often more valuable than knowing how to type the code. Rubrics

should explicitly assess how candidates familiarize and orient themselves within

unfamiliar codebases.

To accomplish this, our NextGen rubric breaks Code Productivity into two

sub-segments. The “Completeness” section is replaced by a new measure of Code

Productivity, and a new sub-competency that assesses a candidate’s ability to

review and navigate a robust codebase while leveraging Al tools.



karat”

Code Productivity
Excellent: The candidate produced code to meaningfully address
) all the task's requirements. (Even if their solution has bugs, this
- rubric item is appropriate if the code in principle addresses the

task's requirements.)

Good: The candidate produced code to meaningfully address
most of the task's requirements.

Fair: The candidate made some meaningful progress, but the
solution is mostly incomplete. (Choose this rubric item if the
candidate produced some nontrivial code to implement the
functionality, but struggled to write a complete implementation.)

Poor: The candidate did not make meaningful progress beyond
pseudocode. (This rubric item is appropriate if the candidate
struggled to produce more than a few lines of valid code related
to the task.)

Note: This section specifically records how much of the task the candidate meaningfully worked on. The
logical correctness or quality of their code shouldn't factor into the rating here. Those observations are
recorded in separate "Code Correctness” and “Implementation Quality” rubric sections. Separating
these into discrete observations allows the competencies to be evaluated independently.

Sub-competency: Navigating Code Base
Observable signals for Navigating Code Base may include:

e Identifying the correct files, classes, or modules to inspect
e Using tooling (including Al) to accelerate understanding
e Avoiding unnecessary exploration of irrelevant areas

These two scores (Code Productivity and Navigating Code Base) can be weighted
based on the role requirements and are combined to create a new aggregate

Productivity score.

Updated competency: Product Sense and Problem Solving

Product sense and problem-solving are examples of critical engineering
competencies that “lucky” Al outputs might obfuscate in an interview setting. In
Al-enabled interviews, it becomes vital to observe and record how effectively a

candidate asks questions to clarify and scope the task requirements.



karat”

Observable signals and sub-competencies for Product Sense and Problem Solving
may include:

e Asking multiple relevant questions about goals or task requirements
e Making reasonable assumptions in the implementation of a task

e |dentifying meaningful cases to test

e Proficiently debugging without assistance

New competency: Al Proficiency

High-performing engineers treat Al as a collaborator, not an oracle. Unchecked
Al-generated code introduces operational, security, and reliability risks, especially at
enterprise scale. Thus, the ability to evaluate code has become even more important
than the ability to produce it from scratch. Thus, evaluating a candidate’s Al
proficiency requires insights into both how a candidate produces code using Al and

how they evaluate it.

Sub-competency: Prompting Al Code
Observable signals may include:

e Crafting prompts with appropriate scope and context
e Using Al to summarize, analyze, or compare code paths
e Recognizing when Al output is incomplete, incorrect, or misleading

Sub-competency: Evaluating Al-Generated Code
Observable signals may include:

e Reading and explaining Al-generated logic
e Running or testing generated code
e Modifying Al output to align with system constraints

Different organizations may tailor the competencies they evaluate and adjust score
weighting across roles and levels, but the most important factor is having clear,
consistent guidelines for how interviewers score observable behaviors. This prevents
conflating competencies and subjective/stylistic choices (i.e,, is the candidate
actually a “poor communicator” or did they just have an accent that was difficult for
the interviewer to understand?).



karat”

From rubric scores to workforce strategies

One essential point to remember is that rubrics are not decisions. They are records of
observable behaviors. These observations should aggregate into scores that allow
candidates’ abilities to be compared on a level playing field.

This allows for flexibility when:

e Weighting decision-making and evaluation competencies more heavily for
senior roles

e Allowing multiple “paths to yes” that reflect different engineering strengths

e Explicitly defining red flags (e.g., uncritical acceptance of Al output)

The result is a much richer, higher definition profile of each candidate that
independently evaluates core competencies and Al proficiency.

Structured rubrics matter more than ever

Al amplifies variance. Two candidates can arrive at similar outcomes with radically

different levels of understanding, ownership, and risk.
Structured rubrics:

e Make that variance visible and auditable
e Reduce reliance on intuition
e Protect against bias introduced by communication style or Al familiarity

For enterprise organizations, they are the foundation for evaluating engineers who
can safely and effectively operate in Al-augmented environments.

Conclusion

Al is raising the talent bar by enabling the strongest engineers to create more value
than ever before. Leaders are under pressure to cut costs due to Al gains, but
productivity gains alone aren’t enough to keep up with competitors. As a result, most
engineering executives expect flat or growing headcounts, with hiring and L&D cited

as the main strategies for transforming their workforce for Al.


https://karat.com/the-human-ai-workforce-transformation-is-here-is-your-hiring-process-ready/
https://karat.com/resource/ai-workforce-transformation-report/

karat”

Yet, despite the strategic focus on hiring and the need to maintain or grow
headcounts, most orgs aren't ready to hire engineers with the skills they need for a
human + Al enterprise. Research shows that the organizations that use live human
interviewers while allowing candidates to leverage the latest Al tools produce_the

best engineering outcomes.

By evolving competencies, preserving observable scoring, and treating Al as a
first-class part of the engineering workflow, CIOs and CTOs can continue to hire with

confidence, consistency, and scale.

The organizations that adapt their rubrics now will be best positioned to build
durable engineering teams for the next decade.


https://connect.karat.com/hubfs/2025-AI-Workforce-Transformation-Highlights.pdf
https://connect.karat.com/hubfs/2025-AI-Workforce-Transformation-Highlights.pdf

	Human + AI technical interview rubrics 
	Executive summary 
	Why traditional rubrics are no longer enough 
	Core principles for human + AI skills evaluations 
	1. Separate outcomes from process 
	2. Treat AI as an engineering resource 
	3. Anchor scoring in observable behavior 

	 
	Evolving the competency model: code productivity 
	NextGen interview rubrics for the human + AI era 
	Redefining “Productivity” for the human + AI era 
	Sub-competency: Navigating Code Base 

	Updated competency: Product Sense and Problem Solving 
	New competency: AI Proficiency 
	Sub-competency: Prompting AI Code 
	Sub-competency: Evaluating AI-Generated Code 


	From rubric scores to workforce strategies 
	Structured rubrics matter more than ever 
	Conclusion 


